50 yeas ago, Gordon Moore predicted exponential progress in microelectronics. This predication soon became "Moore's Law", which drove the entire semiconductor industry with myriads of engineers and physicists towards incredible progress over the five decades since. Essentially, it is the realization of Moore's prediction that made possible the Information Society that we live in now. Today, we continue in research and innovation in Moore's footsteps, even tough the path to progress has arguably become more complicated. But it's sure still a lot of fun!
Einzelne Atomlagen des härtesten, leitfähigsten und flexibelsten Materials der Welt haben Prof. Dr. Max Lemme und seine Mitarbeiter Dr. Andreas Bablich und Dipl.-Ing. Daniel Schneider sichtbar gemacht. Der Professor für Graphen-basierte Nanotechnologie zeigt ein-, drei- und fünflagiges Graphen, desweiteren setzt der Wissenschaftler diesen Kohlenstoff in einen Schaltkreis ein, um LEDs zum Leuchten zu bringen. Außerdem demonstriert Prof. Lemme „die flexible Leitfähigkeit von Graphen, welches eine bisher von keinem anderen Material erreichte Zugbelastbarkeit aufweist“. Dazu haben er und sein Team Graphentinte auf bedruckbare Folie aufgebracht, diese Tinte ist zugleich Teil eines Stromkreislaufs, zudem drückt ein Motor die Folie zusammen und zieht sie wieder auseinander. „Ein Metall würde brechen, Graphen bleibt unbeschädigt“, erklärt Prof. Lemme. Mit Hilfe von Graphen hoffen die Wissenschaftler beispielsweise, Handys flexibler zu gestalten oder sie entwickeln Transistoren, um elektronische Schaltkreise schneller zu machen.
A joint paper by partners of the GRADE consortium has just been published online in ACS Nano. The European FP7 project is coordinated by Prof. Lemme of the University of Siegen. The paper is lead by Dr. Lupina from IHP in Frankfurt/Oder, and includes international researchers from
Today, 1 April, researchers at the Collio Mountain Research Institute announced the discovery of a new two-dimensional material - grapene - that could one-day rival silicon in computers, steel in cars and chocolate in candybars. (Yes. We know. That’s what they all say.) The new substance exists in flat sheets, connected by strong bonds composed of cellulose and lignin. In bulk form, its natural state, it’s found hanging in chaotically-arranged bunches.
We proudly announce the publication of our recent paper titled “Optimizing the optical and electrical properties of graphene ink thin films by laser-annealing” in the Journal “2D Materials” by IOPScience. The laser-annealing method is an enhancement technique to improve the optical and electrical properties of graphene thin films fabricated from graphene dispersion. This has been a collaborative work between the groups of Professor Max Lemme and Professor Peter Haring Bolivar at University of Siegen, as well as Mikael Östling at the KTH-Royal Institute of Technology, Sweden.